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Abstract

Analytical thin film peeling models, like the Kendall model (Kendall, 1975), are formulated
under restricting assumptions concerning the strip geometry, the material behavior, the peeling
kinematics and the contact behavior. Recently, such models have been applied to study the
peeling of gecko spatulae, although the gecko spatula is significantly different from an idealized
thin film. Especially the bending stiffness of the spatula has a strong influence on the peeling
force which is neglected in the Kendall model. This is demonstrated here by several detailed
finite element computations, based on a geometrically exact deformation model and a refined
contact description for van der Waals adhesion. Therefore, the peeling of an elastic strip is
considered and the influence of the bending stiffness is studied. It is shown that the adhesion
induces a bending moment within the strip that can become very large and must therefore be
accounted for in the strip formulation and evaluation of the work of adhesion. Further, the
implications on the computation of the peeling behavior of gecko spatulae are discussed. It is
observed that the spatula geometry lies in the range where the peeling work attains a maximum.

keywords: van der Waals adhesion, thin film peeling, computational contact mechanics, nonlin-
ear beam formulation, finite element method

1 Introduction

The adhesion and peeling properties of thin films are important to many applications, like
paint and coating technology, adhesive tapes, cell adhesion and gecko adhesion. One of the
most widely used models for the mechanical description of peeling is the analytical peeling
model of Kendall (1975). The Kendall model, which accounts for the axial stiffness of the film
but neglects the bending and shear stiffness, has been extended by many researchers to account
for root rotation (Williams, 1993), non-linear material behavior (Williams and Kauzlarich, 2005;
Molinari and Ravichandran, 2008), shear and bending stiffness (Li et al., 2004; Thouless and
Yang, 2008) and pre-tension (Chen et al., 2009). To reflect current research, a special issue on
peel testing has appeared recently (Moore (Ed.), 2008).
In recent studies, peeling models have been applied to the gecko spatula (Huber et al., 2005;
Tian et al., 2006; Pesika et al., 2007; Chen et al., 2009; Peng et al., 2010). These studies,
however, consider the Kendall regime, where the bending stiffness is negligible. Also missing
are the influences of the section rotation and the shear in the peeling zone, which affect the
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computation of the peeling forces and the peeling work. These influences lead to strongly
non-linear peeling models that need to be solved by numerical methods like the finite element
method. Detailed 2D and 3D finite element models, however, tend to become very costly,
especially for peeling computations where sharp stresses need to be resolved at the peeling front
(Sauer, 2011). It therefore becomes advantageous to develop efficient numerical models that are
based on reduced kinematics, like beam theories.
This paper assesses the influence of the bending stiffness on thin film peeling and argues that
detailed models need to be used for films with finite bending stiffness, especially in the example
of the gecko spatula. Three main purposes are served:

1. to show that a bending moment is induced within the film due to adhesion and to discuss
its influence on the work of adhesion; therefore the notion of the partial work of adhesion
is introduced;

2. to discuss the influence of finite bending stiffness on thin film peeling by examining the
film deformation, the peeling force and the peeling work; and

3. to discuss the implications on gecko adhesion.

As a framework we consider the adhesion formulation of Sauer and Li (2007b,a), which is based
on the Lennard-Jones potential and computational contact mechanics (Wriggers, 2006). This
formulation offers several advantages over other methods like cohesive zone models: It is based
on a variational principle, it is suitable for van der Waals adhesion and allows to combine
common contact descriptions used at different length scales into a unified framework (Sauer
and Li, 2007b, 2008). The formulation also bears resemblance with cohesive zone models used
in fracture mechanics. For the results presented here, the adhesion formulation is incorporated
into a nonlinear finite element approach based on non-linear beam theory.
The remainder of this paper is structured as follows: Sec. 2 shows that certain special cases,
like peeling by pure bending, can be solved analytically. Sec. 3 discusses the work of adhesion,
which is a central parameter for peeling, and shows how it can be computed accurately for thin
films and strips. Due to adhesion, a distributed force and bending moment are induced within
the film. In Sec. 4, the formulation is used within a nonlinear finite element approach to analyze
the peeling behavior of thin films with finite bending stiffness. Sec. 5 concludes this paper.

2 Work balance of the peeling film

This section applies the balance of work to the peeling of an elastic film and shows that two
special cases can be described analytically. Quasi-static and plane strain conditions are con-
sidered. In order to peel an adhering film from an adhesive substrate work must be provided.
This external work is converted into the internal energy stored inside the elastic deformation
and the contact energy required to separate the adhering bodies. In incremental form we thus
have

dΠext = dΠint + dΠc . (1)

This result essentially corresponds to the theorem of expended work, which is a consequence of
the balance of linear momentum (Gurtin, 1981). The three incremental work contributions are
discussed in the following three sections. We therefore, consider an elastic strip with length L,
height h and width b adhering to a substrate along the bottom surface L× b. The substrate is
considered perfectly flat.
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2.1 External work

Suppose that the strip is loaded at one end by an applied force F and bending moment M .
Given an infinitesimal displacement du and rotation dθ, the external work changes by

dΠext = F · du+M dθ . (2)

Both F and M are supposed to act within the plane formed by the strip axis and substrate
normal (see Fig. 1). The force can be decomposed into the components along these directions,
denoted by F1 and F2, so that

dΠext = F1 du1 + F2 du2 +M dθ . (3)

2.2 Internal energy

For an elastic body B, the internal elastic energy corresponds to the work done by the internal
forces and elastic deformations. These can be characterized by the stress tensor σ and the
strain tensor ε = 1

2(∇u + (∇u)T ). The incremental increase of the internal energy, due to an
incremental increase of the deformation is thus given by

dΠint =
∫
B
σ : dεdV . (4)

According to the Euler-Bernoulli beam theory3 the deformation of the strip is characterized by
the axial strain ε and the bending curvature κ, while the internal forces are characterized by
the axial force N = EAε and bending moment M = EIκ, so that expression (4) becomes

dΠint =
∫ L

0

(
EAε dε+ EI κdκ

)
dL . (5)

Here EA and EI denote the axial stiffness and bending stiffness, that are obtained from Young’s
modulus E, the cross section area A = bh and the second moment of area I = bh3/12 of the
rectangular cross-section of the strip. Considering a homogeneous strip with constant EA and
EI, the integration over the strain interval [0, ε] and the curvature interval [0, κ] yields the
internal energy

dΠint = 1
2EAε

2 dL+ 1
2EI κ

2 dL . (6)

within the strip segment dL. During peeling of the strip, the initially undeformed length dL
is newly stretched and bend, so that eq. (6) describes the change in the internal energy of the
strip.

2.3 The contact energy

The contact energy corresponds to the work done by the contact traction Tc over the contact
surface. When two adhering surfaces are separated, the contact energy can also be formulated
in terms of the work of adhesion wadh, which is defined as the energy per unit area necessary
to fully separate two adhering bodies (Israelachvili, 1991). It is often considered as a material
parameter. During peeling, as the peeling surface increases by the area dAc, the contact energy
therefore increases by

dΠc = wadh dAc . (7)

A discussion on the accurate computation of wadh is given in Sec. 3.
3The Euler-Bernoulli beam theory assumes linear elastic material behavior and neglects the work done by the

shear forces
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2.4 Applications

In some cases it is possible to exploit the equations above analytically. Two fundamental peeling
examples, shown in Fig. 1, are discussed in the following.

–a. b.

Figure 1: Fundamental peeling examples: a. peeling by pure bending; b. peeling by pure
stretching.

2.4.1 Peeling by pure bending

We first consider the peeling of a rectangular strip by applying a rotation to the end of the strip.
In this case the strip is subjected to pure bending between the peeling front and the right end
as is shown in Fig. 1.a. The bending radius is denoted by R0, so that κ = R−1

0 . If an additional
rotation increment dθ is applied at the end, the peeling zone advances by dL = R0dθ, and we
have dΠint = 1

2EIκdθ, dΠext = M dθ and dΠc = wadhbR0 dθ according to the equations above.
Using the relation M = EIκ with I = bh3/12, eq. (1) thus yields the expression

M

Ebh2
=
√
wadh

6Eh
, (8)

for the bending moment M , and the relation

R0

h
=

√
Eh

24wadh
, (9)

for the bending radius R0. If wadh increases by a factor of γ, the bending moment will increase
by
√
γ and the bending radius will decrease by

√
γ. For a gecko spatula pad with E = 2 GPa

, h = 10 nm and wadh = 30.66 mJ/m2 (Sauer, 2009), we have wadh/(Eh) = 1.533 · 10−3 and
therefore M/b = 3.197 nN and R0 = 52.13 nm.4 These values come very close to the result
found from a detailed nonlinear finite element analysis, which accounts for the complex 2D
deformation field at the peeling front. This has been considered in Sauer (2011), where we
have found M/b = 3.283 nN.5 According to that computation, the average bending radius is
52.67 nm, which shows that the detailed FE result behaves slightly stiffer.
Concluding, we note that expression (8) can only be used if the bending radius R0 is constant,

4wadh is computed from eq. (18) using AH = 10−19 J and r0 = 0.4 nm.
5In Sauer (2011) we have reported M/b = 1.6414EL2

0 which is equal to M/b = 3.283 nN since E = 2 GPa and
L0 = 1 nm there.
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which is not the case if the peeling forces are long range, or if an external force, instead of a
moment, is applied, as is seen from the results in Sec. 4.

2.4.2 Peeling by pure stretching

As a second example, we consider the peeling by an applied force as is shown in Fig. 1.b.
During peeling, the amount of bending does not change so that the bending energy does not
contribute to the energy change described by eq. (6). But as Sec. 3 shows, the strip curvature
in the peeling zone can affect the adhesion energy wadh. According to Fig. 1.b, we now have
dΠint = 1

2EAε
2 dL, dΠc = wadh bdL and dΠext = F [(1 − cosα) + ε]dL. Using the relation

F = N = EAε, eq. (1) then gives

F 2

2Ehb2
+
F

b
(1− cosα) = wadh , (10)

which is the well known result according to Kendall (1975). The positive root of this equation
is given by

F

EA
=
√

(1− cosα)2 + 2
wadh

Eh
− (1− cosα) . (11)

To assess the influence of wadh on F , we consider the reference energy wadh,∞ = 1.533 · 10−3Eh
associated with gecko adhesion (see Sec. 2.4.1) and compare the force F (wadh = γwadh,∞) to
the reference case Fref = F (wadh = wadh,∞). This is shown in Fig. 2 for the values γ = 1/2,
γ = 1 and γ = 2. Fig. 2.b shows that the influence of wadh is most prominent for large α, where

a. b.

Figure 2: Peeling force F (α,wadh) according to eq. (11) (Kendall, 1975) for the adhesion
parameters wadh = γwadh,∞ with γ = 1/2, γ = 1 and γ = 2: a. normalization of F by EA; b.
normalization of F by Fref .

F changes by γ, whereas F only changes by
√
γ for α = 0.6

It is important to note that the Kendall solution neglects the bending stiffness of the strip
since it assumes that F is parallel to the strip axis. It is shown in Sec. 4 that the bending
stiffness is quite high for the gecko spatula and thus the Kendall model does not apply since
it underestimates the peeling force substantially. One should also note that the Kendall result
only provides the force during peeling but gives no information on the force build-up and the
snap-off behavior. In general, these can only be obtained from numerical approaches like the

6It can be formally shown that F/Fref =
√
γ for α = 0 and F/Fref = γ for wadh,∞/(Eh)� (1− cosα).
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finite element method considered in Sec. 4. These methods require an accurate evaluation of
the contact energy, as is discussed in the following section.

3 The work of adhesion for films and strips

In this section we reexamine the work of adhesion, adapt the concept to peeling films and assess
the influence of the film height and the bending curvature at the peeling front.
The results of the preceding section are based on the work of adhesion which is introduced as
a material constant. It is defined as the surface energy required to fully separate two adhering
bodies. This approach works well for the two preceding examples, since the global energy of
the strip is considered. But the concept cannot be used in the following two cases: If the the
strip is not fully peeled off the substrate and, more generally, if a finite element formulation
is used. The reason for the second case is that the local energies of the individual elements
need to be evaluated. These are considerably lower than wadh for those elements that have only
partially separated. We therefore need to find an expression of the work of adhesion for partial
separation, which we denote ‘partial work of adhesion’. For thin films, this depends on the film
height and the bending curvature of the strip during peeling.
Let us first consider that the surfaces of the two bodies remain parallel during separation and
describe the separation by the coordinate r. The work of adhesion for a separation from the
equilibrium distance r = req up to the arbitrary distance r = rd is then given by

wadh(rd) = −
∫ rd

req

Tc drs , (12)

where Tc denotes the distance dependant surface traction acting on the separated surface located
at r = rs. In the remainder of this discussion, we consider the Lennard-Jones potential in order
to define this traction. However, any other traction-separation law, like the Xu-Needleman
model (Xu and Needleman, 1994) or Coulomb interaction, can be used within the following
framework. For the Lennard-Jones potential, which is suitable to describe van-der-Waals adhe-
sion, Tc follows from the integration of the body force7

Bc(r) =
AH

2πr40

[
1
5

(r0
r

)10
−
(r0
r

)4
]

(13)

over the height of the strip. Here AH denotes Hamaker’s constant and r0 denotes the equilibrium
distance of the Lennard-Jones potential. Denoting the upper and lower boundaries of the film
by r1 and r2 we thus have

Tc =
∫ r2

r1

Bc(r) dr , (14)

i.e.
Tc = T (r1)− T (r2) , (15)

with

T (r) =
AH

2πr30

[
1
45

(r0
r

)9
− 1

3

(r0
r

)3
]
, (16)

according to eq. (13). The equilibrium spacing between the adhering surfaces, req, is the spacing
where Tc(rs = req) = 0. If the film height is sufficiently large8,

req = 6
√

1/15 r0 . (17)

7This expression is obtained by integrating the Lennard-Jones force over the neighboring body which is
approximated by a flat half-space (Sauer and Wriggers, 2009).

8For h > 3.5 nm and r0 = 0.4 nm the contribution from boundary r2 becomes less than 10−3 times the
maximum adhesion value Tmax =

√
5AH/(9πr

3
0). Thus Tc ≈ T (r1) and req follows from T = 0.
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For full separation (rd =∞), one then finds from eq. (12)

wadh,∞ = 3
√

15
AH

16πr20
. (18)

During peeling, the contact surface curves away from the substrate. This behavior does not
affect wadh,∞, since it makes no difference on which path rd = ∞ is reached. For finite rd,
however, the surface curvature affects the partial work of adhesion substantially and one cannot
use expression (12). Three effects occur: 1. an apparent increase of the film density, 2. an
additional bending moment and 3. the shear deformation of the film. The last effect is only
significant for shear flexible films, which are not discussed in detail here. The first two effects
are illustrated in Fig. 3 and are discussed in the following. In order to draw general conclusions,
it is important to account for the deformation of the film and note that the body force Bc acts
on the volume element dv1 of the deformed strip B1. As it is more convenient to integrate the
body forces over the undeformed strip configuration B01, the body forces have to be formulated
with respect to the undeformed volume element dV1. This is the case of the expression given in
eq. (13) (Sauer and Wriggers, 2009).

Figure 3: Cross-sectional film force Tc and bending moment Mc induced by adhesion. These
act on the deformed configuration of the film, denoted B1, but can be conveniently computed
by integration over the undeformed configuration of the film, denoted B01.

1. Due to the bending of the film, segment dS is inclined by the angle α, so that the undeformed
volume element dV1 can be written as

dV1 =
bdr dS
cosα

. (19)

The (cosα)−1 term corresponds to an apparent increase of the density along direction r. The
surface traction introduced in eq. (14)–(16) thus changes to

T̃c =
Tc

cosα
. (20)

2. Due to the inclination of the film, the adhesion forces induce a bending moment, Mc, as is
shown in Fig. 3. It is caused by the eccentricity

e = (rM − r) tanα (21)
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of the body force Bc. Here, rM denotes the location of the center axis of the film. The integration
across the film height then defines the sectional bending moment as

Mc =
∫ r2

r1

(rM − r) tanα
Bc(r)
cosα

dr . (22)

According to eqs. (13) and (14), this integration yields

Mc =
(
rM Tc − r0 T ∗c

)tanα
cosα

, (23)

with
T ∗c =

∫ r2

r1

r Bc dr = T ∗(r1)− T ∗(r2) , (24)

and

T ∗(r) =
AH

2πr30

[
1
40

(r0
r

)8
− 1

2

(r0
r

)2
]
. (25)

According to Fig. 3, the boundaries of the film are given by

r1(α) = rM −
h

2
cosα , r2(α) = rM +

h

2
cosα . (26)

The work of adhesion now follows as the work done by the traction Tc and the moment Mc from
the equilibrium configuration of the cross-section, at position r = req and inclination α = 0, to
the current configuration of the section, at r = rd and α = αd, i.e.

wadh(rd, αd) = −
∫ rd

req

Tc

cosα
drM −

∫ αd

0
Mc dα . (27)

The two terms appearing in eq. (27) are denoted by wadh,T and wadh,M in the following. The
second term does not appear in the original formulation given in eq. (12). Depending on the
film height h and the local bending curvature κ of the film, this part can become very large, as
is illustrated by the following figures. For this illustration, we consider the special case where
the bent film axis lies on a circle with radius R0, i.e.

rM(α) = req +R0(1− cosα) + h/2 , (28)

so that the work of adhesion becomes

wadh(αd) = −
∫ αd

0

Tc

cosα
R0 sinα dα−

∫ αd

0
Mc dα . (29)

which can be easily evaluated numerically. Fig. 4 shows the dependency of the two terms wadh,T

and wadh,M, normalized by w0 = wadh,∞, on the film curvature radius R0 for five different values
of the film height h. For large ratios h/R0, the contribution of wadh,M becomes very large: If
h/R0 > 0.1, contribution wadh,M accounts for more than 5% of wadh. Surprisingly, this is even
the case for large bending radii R0, so that we cannot use approximation (12) even then. As
the figure shows, this approximation can only be used for small h/R0. Here, we have considered
ratios up to the physical limit h/R0 = 2. For the range of parameters considered in the figure,
the sum wadh = wadh,T + wadh,M is equal to wadh,∞. In all cases the peeling angle is set to
αd = π/2.
Fig. 5 shows the dependency of wadh,T and wadh,M on the film height h for six different values
of the film curvature radius R0. Again, αd = π/2 and h/R0 ≤ 2 are considered. For very small
values of h, below 1 nm, the total work of adhesion wadh = wadh,T +wadh,M is significantly lower
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Figure 4: Influence of the bending radius R0 of the peeling film on the contributions of the
work of adhesion wadh,T and wadh,M for five different values of the film height h. If h/R0 > 0.1
contribution wadh,M accounts for more than 5% of wadh.

than wadh,∞, due to effect of the upper boundary on integration (14).9 Only for large h do
wadh,T and wadh,M add up to wadh,∞. But note that when h/R0 is large, approximation (12)
cannot be used since wadh,M becomes large.
Finally, Fig. 6 shows the influence of αd, the third and last free parameter affecting wadh

according to eq. (29). Here, we have considered h = 10 nm and R0 = 50 nm. It can be seen
that the work of adhesion is only saturated (i.e. wadh ≈ wadh,∞) beyond αd = 20◦.
The three figures illustrate that it is important to evaluate the work of adhesion according to eq.
(27) instead of using eq. (12). This is especially important for large values of h/R0, which are
typically attained for soft films with strong adhesion, like the gecko spatula. For the spatula,
we have h/R0 ≈ 0.2 as is noted in Sec. 2.4.1.

4 Accurate peeling behavior of an elastic film

This section discusses the influence of the bending stiffness on the peeling behavior of the elastic
film and compares this case to the special cases for zero and infinite bending stiffness.10 These
computations are based on a finite beam element formulation of the Timoshenko (i.e. shear
flexible) beam theory, that is geometrically exact, i.e. the non-linear beam kinematics of large
deformations are captured exactly (Wriggers, 2008). Details of this formulation will be reported
in a future publication. As a test case, a strip with height h = 10 nm and length L = 200 nm is
considered in the following, which resembles the dimensions of the spatula pad that is located
at the tip of the gecko foot hairs (Tian et al., 2006). Plane strain deformation is considered,

9Note that for very small h, the equilibrium spacing is not equal to eq. (17) and must be recomputed from
Tc(req) = 0.

10Note that we also have finite bending stiffness in the analytical model of Sec. 2.4.1, however, in that model
special kinematics are considered which are not general and do not apply to combined bending, extension and
shear as is considered here.
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Figure 5: Influence of the film height h on the contributions of the work of adhesion wadh,T and
wadh,M for six different values of the bending radius R0.

such that the strip width b does not need to be specified. The strip material is modeled linear
elastically with Young’s modulus E and Poisson’s ratio ν, which is taken as ν = 0.2 for the
following examples. The strip is pulled upward by applying a vertical displacement u at the
right boundary (x = L). During peeling, the strip remains free to rotate at this boundary. The
left boundary (at x = 0) remains unconstrained. Adhesive, frictionless contact is considered
along 75% of the bottom surface of the strip (from x = 0 to x = Lc = 150 nm). The adhesive
contact forces are derived from the Lennard Jones potential (see Sec. 3) giving the line load
Tc and moment Mc acting on the beam (see eqs. (15) and (23)). Before discussing the finite
element results the following two special cases are examined.

1. Peeling force for EI = 0: The case for zero bending stiffness corresponds to the Kendall
result reported in Sec. 2.4.2. According to eq. (11) the peeling force is P0/b = 0.03064 N/m.

2. Peeling force for EI =∞: If the bending stiffness is infinite, the strip does not deform and
thus detaches at once from the substrate. Two boundary conditions are considered at x = L:
(1) assuming fixed rotation and (2) assuming free rotation. In the first, case the strip remains
parallel to the substrate during detachment and the maximum ’peeling force’ is given by the
maximum contact tension (= −Tmin) times the entire contact surface Lcb, i.e.

P∞,1 = −LcbTmin , (30)

where Tmin denotes the minimum of Tc which is practically equal to the minimum of T given
in eq. (16), i.e. Tmin = −

√
5AH/(9πr30). For Lc = 150 nm, we thus find P∞,1/b = 18.536 N/m.

The second case is more complicated to evaluate. During detachment, the rigid strip remains
free to rotate. We suppose that the strip rotates about the bottom left corner point (at x = 0),
denoted as A in the following. For a rotation of α, the moment balance around point A gives

P∞,2(α) = − b

L∗

∫ Lc cosα

0

(
xcTc +Mc

)
dx , (31)
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Figure 6: Influence of the peeling angle αd on contributions wadh,T and wadh,M. Saturation only
occurs for large αd.

where
L∗ = L cosα− h/2 sinα ,
xc = x− h/2 sinα

(32)

denote the lever arms of forces P and Tc with respect to A. Tc and Mc are given by eq. (15)
and (23), setting

r1 = req + x tanα ,
rM = r1 + h/2 cosα ,
r2 = r1 + h cosα .

(33)

Expression (31) can be evaluated numerically for various α. We thus find the maximum peeling
force max(P∞,2/b) = 6.506 N/m at the angle α = αmax ≈ 5.1 · 10−4.11

It can be seen that the two limit cases, EI = 0 and EI = ∞, cover a large range of possible
peeling forces so that intermediate models are needed to analyze the peeling behavior.

For finite values of the bending stiffness EI, a closed form solution cannot be obtained in
general and the finite element method is therefore used to determine the peeling force. Fig. 7
shows the deformation of the peeling strip for different values of the applied displacement u.
The strip parameters are taken as E = 2 GPa, h = 10 nm, AH = 10−19 J and r0 = 0.4 nm
which corresponds to the values associated with gecko adhesion (Sauer, 2009). One can observe
that, due to the finite bending stiffness, the strip axis is not parallel to the peeling direction.
This property is one of the main differences to the Kendall result, where the force P remains
parallel to the strip axis during peeling. In consequence, the peeling force increases significantly
compared to the Kendall result.
This is shown in Fig. 8.a. Here, the force-displacement curve of the strip is displayed for
different values of the bending stiffness EI, obtained by changing the stiffness E in multiples of
E0 = 2 GPa. For large EI, a distinct force maximum is observed whereas for low EI a long force
plateau is observed. The latter case corresponds to the Kendall case and it can be seen that the
Kendall result (P/b = 30.64 mN/m) is attained. For the gecko data (E = E0), the maximum
peeling force is nearly twice as large as the Kendall result, which shows that the Kendall result
cannot be applied to the gecko spatula. The five dots on the E = E0 curve correspond to the
configurations shown in Fig. 7. Varying the stiffness E is analogous to varying the adhesion
parameter AH as Fig. 8.b shows. Changing E by a factor of γ corresponds to changing AH by

11Due to the small angle we can approximate sinα = α, cosα = 1, L∗ = L and xc = x in eqs. (31)–(33).
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Figure 7: Strip deformation during peeling for the displacements u = 0, u = 21.5 nm (which is
the location of the maximum peeling force), u = 50 nm, u = 100 nm and u = 148.5 nm. The
strip parameters are taken as E = 2 GPa, h = 10 nm, AH = 10−19 J and r0 = 0.4 nm.

1/γ. In Fig. 8.a the adhesion parameter is kept fixed at AH = AH0 while the stiffness is kept
fixed at E = E0 in Fig. 8.b. Note that changing E also affects the axial stiffness EA and the
shear stiffness GA of the strip. The effect, however, is very weak so that the results in Fig. 8
change by less than a few per cent.
Changing the stiffness and the adhesion of the strip also affects the deformation. This is shown
in Fig. 9, which considers the cases E/AH = 10E0/AH0 (stiff strip with weak adhesion) and
AH/E = 10AH0/E0 (soft strip with strong adhesion). It can be seen that the strip deformation
at the peeling zone cannot be approximated well by a curve with constant curvature, as is
sometimes considered in the literature. The deformation states shown here are marked by dots
in the corresponding force-displacement curves of Fig. 8.
Fig. 10 shows the dependance of the maximum peeling force on different values of EI. It can
be seen that a smooth transition is obtained between the two limit cases discussed above: The
Kendall limit (P/b = 30.64 mN/m) is reached from above, for stiffness values below 10−1EI0,
while the rigid limit is reached for stiffness values above 106EI0. In fact, for the lowest stiffness
considered (EI = EI0/30) the maximum force is slightly lower than the Kendall result. This
may be caused by the geometric nonlinearities of the numerical formulation. Note, that even
though the results here are valid for general problem parameters, the actual force values depend
on the specific geometry and material parameters of the strip. For the gecko spatula, the height
varies roughly between h = 10 nm at the pad to about h = 100 nm at the shaft, so that we
obtain the stiffness range indicated in the Fig. 10.12

As a final consideration, Table 1 examines the total peeling work, defined as the area under
the peeling curve up to the stability point, i.e. the last data point of the force-displacement
curves in Fig. 8, where the strip will snap into a new equilibrium configuration. At this point
the strip may not be fully released, as Fig. 7 and 9 indicate, so that further work is required to

12In the computations, E is varied, while h is kept fixed. This does not correspond exactly to changing h for
fixed E, due to the nonlinear influence of h in the contact formulation according to Sec. 3. Therefore the stiffness
range of the spatula noted in Fig. 10 is only approximate.
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a. b.

Figure 8: Force-displacement curve of the peeling strip for (a) different values of the stiffness E
and (b) different values of the strength of adhesion AH, both as multiples of the reference values
E0 = 2 GPa and AH0 = 10−19 J. Curves with corresponding colors represent the same data.

E/E0 Peeling work
0.1 4.785 nJ/m
0.3 5.022 nJ/m

1 5.403 nJ/m
3 5.720 nJ/m

10 5.813 nJ/m
102 5.564 nJ/m
103 4.819 nJ/m
104 3.510 nJ/m

Table 1: Total work required to peel off the elastic strip with L = 200 nm and h = 10 nm for
different stiffness values E. A maximum is attained around E = 10E0.

remove the strip. This additional work is not investigated here, since it will depend strongly on
the exact boundary conditions and geometry at the tip of the strip. This is the reason why the
peeling work can be lower than the limit value wadh Lc = 4.599 nJ/m. Since energy is lost during
snap-off and thus needs to be provided additionally, the peeling work can also be significantly
larger than the limit value. For EI = 10EI0, where the limit value is exceeded by 26.4%, the
peeling work attains a maximum. Interestingly, this maximum falls into the stiffness range of
the gecko spatula, which indicates that the spatula may represent an optimal design that tries
to maximize the possible peeling energy.
For the finite element computations reported here, 300 two-node beam elements are used to
discretize the strip and a displacement increment of ∆u = 0.25 nm is used to obtain dense
output. Larger elements and load increments are possible if high order finite elements are used
(Sauer, 2011).

5 Conclusion

This work discusses the peeling behavior of thin films with finite bending stiffness. The adhesion
between film and substrate is modeled by the Lennard-Jones potential since it is suitable to
describe van der Waals interaction, although the results and conclusions drawn here are also
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a. b.

Figure 9: Peeling deformations of (a.) the stiff strip (E/AH = 10E0/AH0) and (b.) the soft
strip (AH/E = 10AH0/E0).

valid for other cohesive zone models. Typically, only special cases can be solved by analytical
methods. For example, if peeling is driven by pure bending, an analytical expression for the
peeling moment can be found. For general loading conditions, which lead to combined bending,
extension and shear deformations, numerical solution techniques, like the finite element method,
need to be used. In this paper, a geometrically exact beam formulation is used to analyze the
peeling behavior of thin films with finite bending stiffness, covering the entire range set by the
limit cases for zero and infinite bending stiffness. The adhesion forces acting on the film lead to
a distributed force and bending moment acting on the center axis of the beam. These also ap-
pear in the expression for the work of adhesion of the film. In the case of the gecko spatula, the
bending stiffness is quite high and cannot be neglected, as is done when applying the Kendall
peeling model. It is seen that the the spatula geometry maximizes the available peeling energy.
Among future research steps is the inclusion of rate-dependant material response and frictional
contact behavior due to the surface roughness at the substrate-film interface. Another useful
extension is to develop a 3D beam formulation that accounts for torsion and skew bending and
which is helpful to analyze complex peeling mechanisms occurring for narrow strips.
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