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Abstract: The boundary element method (BEM) is able to solve partial differential equations
without volumetric discretization and integration. Therefore, the BEM is able to reduce the
compuational as well as the meshing effort compared to volumetric methods like classical finite
elements. In this work, a conventional and a nonsingular BEM formulation for Stokes flow are
presented and investigated in three-dimensions, considering rotating spheres within a viscous
fluid.

1 Introduction

The boundary element method (BEM) is able to solve partial differential equations (PDEs)
efficiently. To this end, the solution of a PDE is expressed in terms of boundary distributions of
their fundamental solution. Thus, boundary discretization and integration is sufficient to solve
a domain problem. The computational effort is drastically reduced compared to volumetric
methods such as the classical finite element method (FEM). The BEM is capable to solve
several linear PDEs (e.g. Laplace, Helmholtz or biharmonic equation). In this work the focus is
on accurate numerical integration for Stokes flow problems. Therefore, a nonsingular boundary
element formulation is introduced and compared to the conventional one.

2 Boundary element method (BEM) for Stokes Flow

In Stokes flow (Reynolds number Re � 1) convective inertial forces are negligibly small com-
pared to viscous forces. Further assuming small accelerations, the motion of an incompressible
Newtonian fluid in an external domain D with boundary S can be described by the steady
Stokes equation

−∇p+ η∇2v = 0 inD, (1)

in combination with properly chosen boundary conditions. For fixed domains in absence of
normal fluid velocity (vn = 0), the incompressibilty constraint is automatically accounted.
Pressure and velocity of the fluid are denoted by p and v respectively, while η denotes its
viscosity and ρ its mass density. Equation (1) can be transformed into the boundary integral
equation (BIE)

c(y) vj(y) = − 1

8πη

∫
S
Gij(r) ti(x) dax +

1

8π

∫
S
vi(x)Tijk(r)nk(x) dax , ∀y ∈ S , (2)
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see e.g. Pozrikidis (2002). The outward unit normal is denoted by n, while t denotes the
boundary traction t = σn with stress tensor σ. The fundamental solution for velocity and
traction can be obtained by

Gij(r) =
δij + r̄ir̄j

r
, Tijk(r) = −6

r̄ir̄j r̄k
r2

, (3)

where r = x− y, r = ‖r‖ and r̄ = r
r . From (3) it can be seen that the fundamental solutions

become singular as x approaches y. Therefore special care should be taken while integrating.
A general overview of avaliable techniques for singular integration can be found in Huang and
Cruse (1993).
The BIE is spatially discretized by nn isogeometric basis functions. Those provide desirable
continuity properties, that are beneficial for the accuracy of the BEM. Using collocation points
yα, where α ∈ 1, . . . , nn, the BIE (2) can be written in compact form (see e.g. Heltai et al.
(2017)) as

(I−C)Mv = G t + T v , (4)

where G contains the contributions from the first integral in (2), while T contains the contribu-
tions from the second one. Operator M transforms the nodal values to the collocation points.
Fig. 1 illustrates the choice of collocation and quadrature points on a spherical isogeometric
surface. The parametric coordinates of the collocation points are given by the Greville abscis-
sae (Greville, 1964). Moreover, the elements are divided into four parts such that all collocation
points lie at the boundaries of those sub-elements. Thus, it is guaranteed that the quadrature
point at position x does not coincide with any collocation point yα.

Figure 1: Boundary quadrature (from left to right): 32 isogeometric elements, 62 collocation points
yα (red) chosen with the Greville abscissae, sub-elements for quadrature, position of quadrature points
(yellow, here: 3× 3 Gaussian quadrature points per sub-element 1152 quadrature points in total)

The nonsingular boundary element method was introduced by Klaseboer et al. (2009, 2012)
and then extended for isogeometric collocation by Heltai et al. (2014). Here, this approach is
investigated and compared to the conventional BEM. In the nonsingular BEM known solutions
are superimposed to unknown fields in such a way that singularities are removed completely.
Following Heltai et al. (2014) the desingularized system of equations can be written as

Hu = Lf , (5)

where H := G+CM and L := T +BM , while C and B contain information about the known
solution. Operators C and B correct the singular entries on the right hand side of (4).
The conventional and the nonsingular BEM for Stokes flow is investigated in numerical experi-
ments. A sphere that rotates within a viscous fluid is considered here. Fig. 2 shows the norm
of the resulting surface traction error

et(x) =
‖t (x)‖ − ‖t∗ (x)‖

max‖t∗‖
, (6)

where t∗ is the analytical solution of the traction. The number of quadrature points per sub-
element is denoted by nqp, while m denotes the mesh refinement level (e.g. m = 2 in Fig. 1).
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With increasing mesh and quadrature refinement, the computational error is decreasing for both
BEM formulations. However, the nonsingular BEM yields a drastically reduced error compared
to the conventional one (see Fig. 2, right: error reduction by more than 80% for m = 2).

Figure 2: Rotating sphere in a viscous fluid (from left to right): Resulting numerical error e1 for
conventional BEM, e2 for nonsingular BEM and their relation e1/e2. The number of quadrature points
per element is denoted by nqp, while m denotes the mesh refinement level.
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